Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars.

نویسندگان

  • John W Holt
  • Ali Safaeinili
  • Jeffrey J Plaut
  • James W Head
  • Roger J Phillips
  • Roberto Seu
  • Scott D Kempf
  • Prateek Choudhary
  • Duncan A Young
  • Nathaniel E Putzig
  • Daniela Biccari
  • Yonggyu Gim
چکیده

Lobate features abutting massifs and escarpments in the middle latitudes of Mars have been recognized in images for decades, but their true nature has been controversial, with hypotheses of origin such as ice-lubricated debris flows or glaciers covered by a layer of surface debris. These models imply an ice content ranging from minor and interstitial to massive and relatively pure. Soundings of these deposits in the eastern Hellas region by the Shallow Radar on the Mars Reconnaissance Orbiter reveal radar properties entirely consistent with massive water ice, supporting the debris-covered glacier hypothesis. The results imply that these glaciers formed in a previous climate conducive to glaciation at middle latitudes. Such features may collectively represent the most extensive nonpolar ice yet recognized on Mars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars

[1] Subsurface radar sounding data indicate that lobate debris aprons found in Deuteronilus Mensae in the midnorthern latitudes of Mars are composed predominantly of water ice. The position in time delay and the relatively low amount of signal loss of the apparent basal reflectors below the debris aprons indicate that aprons contain only a minor component of lithic material. The current presenc...

متن کامل

Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change

Understanding spin orbital parameter-driven climate change on Mars prior to ~ 20 Ma ago requires geological evidence because numerical solutions for that period are chaotic and non-unique. We show geological evidence that lineated valley fill at low midlatitudes in the northern hemisphere of Mars (~ 37.58 N) originated through regional snow and ice accumulation and underwent glacial-like flow. ...

متن کامل

Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits

a r t i c l e i n f o Keywords: Mars lobate debris aprons lineated valley fill debris-covered glaciers glaciation rock glaciers Lobate debris aprons (LDA) and lineated valley fill (LVF) have been known to characterize the mid-latitude regions of Mars since documented by Viking; their flow-like character suggested that deposition of ice in talus pile pore space caused lubrication and flow during...

متن کامل

SHARAD sounding radar on the Mars Reconnaissance Orbiter

[i] SHARAD (SHAllow RADar) is a sounding radar provided by Agenzia Spaziale Italiana (ASI) as a Facility Instrument on the Mars Reconnaissance Orbiter mission. Its 20-MHz center frequency and 10-MHz bandwidth complement the lower-frequency, relatively narrower bandwidth capability of the MARSIS sounding radar. A joint ItalianU.S. team has guided the experiment development and is responsible for...

متن کامل

Application of remote sensing data in measuring the area of the Zardkuh glaciers

Glaciers influenced by climatic factors and therefore as an important indicator in the study of climate change are studied. Although morphometric analyzes of glaciers based on the analysis of optical satellite data can provide an opportunity to measure ice outcrops, but the identification and determination of the buried glaciers underneath the glacial debris and, consequently, the determination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 322 5905  شماره 

صفحات  -

تاریخ انتشار 2008